Welcome to our blog! Lets the mathematic begin!

Monday, January 9, 2012

Rumus Baris Bilangan dan Deret

1. Barisan Bilangan Genap
Barisan: 2, 4, 6, 8, ...
Deret: 2 + 4 + 6 + 8 + …
Rumus Suku ke-n: Un = 2n
Jumlah n suku pertama: Sn = n² + n

2. Barisan Bilngan Ganjil
Barisan: 1, 3, 5, 7, 9, …
Deret: 1 + 3 + 5 + 7 + 9 + …
Rumus Suku ke-n: Un = 2n – 1
Jumlah n suku pertama: Sn = n²

3. Barisan Bilangan Persegi ( Kuadrat )
Barisan: 1, 4, 9, 16, 25, 36, …
Deret: 1 + 4 + 9 + 25 + 36 + …
Rumus Suku ke-n: Un = n²
Jumlah n suku pertama: Sn = 1/6 n( n + 1 )( 2n + 1 )

4. Barisan Bilngan Kubus ( Kubik )
Barisan: 1, 8, 27, 64, 125, 216, …
Deret: 1 + 8 + 27 + 64 + 125 + 216 + …
Rumus Suku ke-n: Un = n³
Jumlah n suku pertama: Sn = 1/4 n² ( n + 1 )²

5. Barisan Bilangan Segitiga
Barisan: 1, 3, 6, 10, 15, 21, …
Deret: 1 + 3 + 6 + 10 + 15 + 21 + …
Rumus Suku ke-n: Un = 1/2 n ( n + 1 )
Jumlah n suku pertama: Sn = 1/6 n ( n + 1 ) ( n + 2 )

6. Barisan Bilangan Persegi Panjang
Barisan: 2, 6, 12, 20, 30, 42, …
Deret: 2 + 6 + 12 + 20 + 30 + 42 + …
Rumus Suku ke-n: Un = n ( n + 1 )
Jumlah n suku pertama: Sn = 1/3 n ( n + 1 ) ( n + 2 )

7. Barisan Bilangan Balok
Barisan: 6, 24, 60, 120, …
Deret: 6 + 24 + 60 + 120 + …
Rumus Suku ke-n: Un = n ( n + 1 ) ( n + 2 )
Jumlah n suku pertama: Sn = 1/4 n ( n + 1 ) ( n + 2 ) ( n + 3 )

8. Barisan Bilangan Fibonacci
Barisan Bilangan Fibonacci adalah barisan yang nilai sukunya sama dengan jumlah dua suku di depannya.
Barisan:1, 1, 2, 3, 5, 8, 13, 21, 34, …
Deret: 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + …
Rumus Suku ke-n: Un = Un - 1 + Un - 2

9. Barisan Aritmatika
Barisan Aritmatika adalah barisan bilangan dimana suku selanjutnya diperoleh dari menjumlahkan bilangan tetap terhadap suku sebelumnya.

Beda (b) = U2 - U1 = U3 - U2 dst
Rumus Suku ke-n: Un = a + (n – 1 )b
Jumlah n suku pertama: Sn = n/2 ( a + Un )
a = suku pertama
b = beda ( selisih )
n = banyaknya suku
Un = seku ke-n yaitu suku terakhir

10. Barisan Geometri
Barisan Geometri adalah barisan yang perbandingan di antara dua suku yang berurutan tetap.dapat di tulis :

U2 : U1 = U3 : U2
Barisan: 1, 2, 4, 8, 16, 32, …
Deret: 1 + 2 + 4 + 8 + 16 + 32 + …
Rumus Suku ke-n: Un =a . rn-1
Jumlah n suku pertama:
Sn = a( rn - 1 ) / r - 1, untuk r ≥ 1
Sn = a( 1 - rn ) / 1 - r, untuk r < 1

5 comments (+add yours?)

santika deni said...

12,15,18,21

Mazmur Kaban said...
This comment has been removed by the author.
Safa Salsabila Hanum said...

Bagaimana cara mencari sn deret geometri pola bilangan segitiga, persegi, dan persegi panjang? Mohon bantuannya.

pro noob said...

wow

Kresna Deva said...

Terima Kasih :)

Post a Comment