Welcome to our blog! Lets the mathematic begin!

Monday, January 9, 2012

Rumus Baris Bilangan dan Deret

1. Barisan Bilangan Genap
Barisan: 2, 4, 6, 8, ...
Deret: 2 + 4 + 6 + 8 + …
Rumus Suku ke-n: Un = 2n
Jumlah n suku pertama: Sn = n² + n

2. Barisan Bilngan Ganjil
Barisan: 1, 3, 5, 7, 9, …
Deret: 1 + 3 + 5 + 7 + 9 + …
Rumus Suku ke-n: Un = 2n – 1
Jumlah n suku pertama: Sn = n²

3. Barisan Bilangan Persegi ( Kuadrat )
Barisan: 1, 4, 9, 16, 25, 36, …
Deret: 1 + 4 + 9 + 25 + 36 + …
Rumus Suku ke-n: Un = n²
Jumlah n suku pertama: Sn = 1/6 n( n + 1 )( 2n + 1 )

4. Barisan Bilngan Kubus ( Kubik )
Barisan: 1, 8, 27, 64, 125, 216, …
Deret: 1 + 8 + 27 + 64 + 125 + 216 + …
Rumus Suku ke-n: Un = n³
Jumlah n suku pertama: Sn = 1/4 n² ( n + 1 )²

5. Barisan Bilangan Segitiga
Barisan: 1, 3, 6, 10, 15, 21, …
Deret: 1 + 3 + 6 + 10 + 15 + 21 + …
Rumus Suku ke-n: Un = 1/2 n ( n + 1 )
Jumlah n suku pertama: Sn = 1/6 n ( n + 1 ) ( n + 2 )

6. Barisan Bilangan Persegi Panjang
Barisan: 2, 6, 12, 20, 30, 42, …
Deret: 2 + 6 + 12 + 20 + 30 + 42 + …
Rumus Suku ke-n: Un = n ( n + 1 )
Jumlah n suku pertama: Sn = 1/3 n ( n + 1 ) ( n + 2 )

7. Barisan Bilangan Balok
Barisan: 6, 24, 60, 120, …
Deret: 6 + 24 + 60 + 120 + …
Rumus Suku ke-n: Un = n ( n + 1 ) ( n + 2 )
Jumlah n suku pertama: Sn = 1/4 n ( n + 1 ) ( n + 2 ) ( n + 3 )

8. Barisan Bilangan Fibonacci
Barisan Bilangan Fibonacci adalah barisan yang nilai sukunya sama dengan jumlah dua suku di depannya.
Barisan:1, 1, 2, 3, 5, 8, 13, 21, 34, …
Deret: 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + …
Rumus Suku ke-n: Un = Un - 1 + Un - 2

9. Barisan Aritmatika
Barisan Aritmatika adalah barisan bilangan dimana suku selanjutnya diperoleh dari menjumlahkan bilangan tetap terhadap suku sebelumnya.

Beda (b) = U2 - U1 = U3 - U2 dst
Rumus Suku ke-n: Un = a + (n – 1 )b
Jumlah n suku pertama: Sn = n/2 ( a + Un )
a = suku pertama
b = beda ( selisih )
n = banyaknya suku
Un = seku ke-n yaitu suku terakhir

10. Barisan Geometri
Barisan Geometri adalah barisan yang perbandingan di antara dua suku yang berurutan tetap.dapat di tulis :

U2 : U1 = U3 : U2
Barisan: 1, 2, 4, 8, 16, 32, …
Deret: 1 + 2 + 4 + 8 + 16 + 32 + …
Rumus Suku ke-n: Un =a . rn-1
Jumlah n suku pertama:
Sn = a( rn - 1 ) / r - 1, untuk r ≥ 1
Sn = a( 1 - rn ) / 1 - r, untuk r < 1

17 comments (+add yours?)

Unknown said...

12,15,18,21

Unknown said...
This comment has been removed by the author.
Unknown said...

Bagaimana cara mencari sn deret geometri pola bilangan segitiga, persegi, dan persegi panjang? Mohon bantuannya.

Muhammad Royyan Balafif said...

wow

Unknown said...

Terima Kasih :)

agnesliie's said...

naissssss thanks

raindrop said...

Sangat bermanfaat terima kasih😊

Unknown said...

Klo derey 2,6,15,31...rumusnya bgmana, mohon pencerahan

dajjal said...

Lol

Motivasi Hidup said...

ki

Motivasi Hidup said...

rumus fibonacci mu salah gan ... ndak ada rumusnya setau saya

no name said...

Itu rumus nya dikurang 3

Unknown said...

Rumus suku ke n
A+AB+AB^2+AB^3...ini suku ke 3 kalo ke 100 gmn?

Unknown said...

Buat rumus Fibonacci kok aku itung pake rumus Un : Un-1+Un-2 Salah yaa.....
Ada yang tau cara lain?

Unknown said...

Terima kasih, sangat bermanfaat

Unknown said...

Gw coba bener

Unknown said...

Bener gw

Post a Comment